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Abstract We consider the nonlinear complex d'Alemberf equation OY = F[lYI)Y with \v 
represented in terms of amplitude and phase. in (1 + n)-dimensional Minkowski space. We 
exploit a compatible d' Alembert-Hamilton system to constmct new types of exact solutions for 
some nonlinearities. 

1. Introduction 

Let us consider the general nonlinear complex d'Alembert equation In (1 + n)-dimensional 
Minkowski space . .  

OY = F(lYI)Y (1) ~ 

where F is a smooth, real function of its argument, Y is a complex function of 1 + n real 
variables, and 

Equation (1) plays a fundamental role in classical and quantum field 'theories, and in 
superfluidity and liquid crystal theory. Many exact solutions have been found using Lie 
symmetry methods (Fushchych and Serov 1983, Grundland et al 1984, 1987, Grundland 
and Tuczynski 1987, Fushchych and Yehorchenko 1989, Fushchych er a1 1993), as well as 
with conditional symmetries (Fushchych et a1 1993). 

In this paper we use the representation Y = ud" where U is the amplitude and U is the 
phase (both real functions). On substituting this in (l), we find the following system: 

(2) 

(3) 

nu - u(upup)  = uF(u) 

U U U +2u,vp = 0. 

We use the notation 

The system (2),(3) is obviously equivalent to the starting equation (1). However, 
equations (2). (3) has the advantage that it gives us the possibility of making functional and 
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6194 P Basarab-Honvath et a1 

differential connections between the amplitude and phase, which substantially simplifies the 
problem of integrating equation (1). Moreover, in assuming the simplest possible relations 
between the amplitude and phase, we are able to construct exact solutions of (Z), (3), and 
hence of (1). 

We now seek solutions of (2),(3). We consider two cases: (i) the amplitude as a 
function of the phase, U = g(u); (ii) the phase as a function of the amplitude, U = g(u). 
This is reminiscent of the polar description of plane curves in geometry. The system (2). (3) 
then yields a pair of equations for the phase U in the first case and for the amplitude U in 
the second case. There then arises the question of the compatibility of the two equations 
obtained, and we solve it by exploiting the compatible system 

1N 
o w = -  W P W P  = 1 

W 
(4) 

where A = -1,O, 1 and N = 0, 1,. . . , n. Exact solutions for the system (4) are given in 
table 1 in section 2. 

The system (4) is a particular case of the d’Alembert-Hamilton system 

o w  = F I ( W )  W P W P  = F Z ( W ) .  (5) 
The system (5) was studied by Smimov and Sobolev in 1932, with w = W ( X O , X I , X Z )  

and 4 = F2 = 0. Collins (1976a,b, 1980, 1983) studied (5) with w a function of three 
complex variables, and obtained compatibility conditions for the functions F1 (w) .  Fz(w). 
For (1 +3) and higher dimensional Minkowski space, (5) was studied by Fushchych and co- 
workers (Fushchych and Zhdanov 1988, Fushchych er al 1991): they obtained compatibility 
conditions for F,(w), F 2 ( w )  and some exact solutions. 

Here, we exploit the results of Fushchych el al (1991), applying them to the system (4). 
Moreover, the compatibility of (4) dictates the type of nonlinearity F ( u )  which can appear 
in (1). This is the novelty of our approach to finding some exact solutions of (1). 

2. Solutions 

2.1. U = g(v) 

We now assume that the amplitude is a function of the phase: U = g(u) .  Inserting this 
assumption in (Z), (3), we obtain 

with g = dg/du. 
We now deal with (6), (7) in two ways: (i) assume forms for Fl, Fz so as to make 

equations (6). (7) compatible; (ii) transform equation (4) locally so as to agree with (6). (7). 
First, let us make the assumption 

with N ,  1 # 0. Then equations (6),(7) become a compatible system (Fushchych er al 
1991), and we also find that g and F must satisfy 

-7.g - N .  g2 gg - 2g2 - g2 - --F(g) 0 - - 
1 g 
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From (8) it now follows that 

g ( v )  = U V - ~ I '  F ( u )  = -A + 
where U # 0 is an arbitrary real constant. With this, we have obtained the following: 

Result I .  

2 

An exact solution of (1) with nonlinearity 

is given by 

* ( X )  = uu(x)-N/ZeiU(X) 

where u ( x )  is a solution of the compatible system (4) for N, A # 0. 

Our next step is to perform a local transformation of (4). We dothis by setting w = f ( u )  
in (4) (with A # 0), with f a real, smooth function such that f # 0. With this substitution, 
we obtain the system: 

The system (9), (10) is obviously compatible since it is the local transformation of an 
already compatible system. However, it should be noted that this does not mean that the 
exact solutions we obtain by using (9),(10) are equivalent to those obtained from (S), since 
we have introduced some extra freedom via the function f. 

We now equate the right-hand sides of (6), (7) with the right-hand sides of (9), (lo), 
respectively. A little algebraic manipulation gives us 

where U is an arbitrary non-zero constant. Thus we have a differential relation between f 
and g which we can integrate. For N = 1 we obtain 

and g has to satisfy the integro-differential equation 

 for N # 1 we find 

C being an arbitrary real constant, and with the following condition on g: 
2 N f ( l - N )  

/" de ~+ C )  F(g)  = 0. 

Our result is summarized in the following: 
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Result 2. (i) The function 

W.4 = g(u(x))  e x p [ i W l  

is a solution of (1) whenever g is a solution of (13) and w(x) = f ( u ( x ) )  is a solution of 

A 
O W = -  w.ww = A 

W 

with f given by (12). 
(ii) The function 

W) = g(u(x))  expMx)l  

is a solution of (1) whenever g is a solution of (15) and w(x) = f ( v ( x ) )  is a solution of 

AN 
Ow=- WFWP = A 

W 

with f given by (14) for N # 1. 

One may treat (13) and (15) in two ways: consider F as given, and then attempt to 
solve for g, or make an assumption about g and then find the corresponding F .  We take 
this second approach, and in doing so, we determine the function f which appears in (12) 
and (14). which also relates (4) to the system (6). (7). 

This is illustrated in the following example, where we take g as g(u) = U@. Then we 
obtain after some elementary manipulation 

when N = 1, 6 = -;;In this case we find the comesponding nonlinear version of (1) and 
an exact solution: 

w = f (U) = Cu'l" 

where w is a solution of 
h u w = -  WWWP = A. 
W 

The solutions of this system are given in table 1. We can choose the nonlinearity in the 
above wave equation by choosing U. For instance, for U' = $ we obtain the equation 

Equation (16) is of the type considered by Grundland and Tuczynski (1987). 
For N = 2, 6 = -1 we obtain the following wave equation and exact solution: 
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where w is a solution of the compatible system 
2h o w = -  wLIwu = A  
W 

and exact solutions of this system are given in table 1. Equation (17) is also of a type 
considered by Grundland and Tuczynski (1987). Our exact solutions are new. 

2.2. v = g(u) 

We now assume that the phase is a function of the amplitude: U = g(u) .  On substituting 
this in equations (Z), (3), we obtain 

-u2gF(u) 
u u  - 2-.3 F&). * -  u g + z g + u  g 

Here g = dg/du. 

0, we find (after some computation) 
We perform the same analysis as before. First, letting F,(u) = AN/u, Fz(u) = h,  h # 

Having determined g and the nonlinearity of the wave equation (19), we have the 
following: 

Result 3. An exact solution of (1) with nonlinearity 

F(lY1) = ANIVI-' - A U ~ ~ Y ) - ~ ~ + ~ )  

is given by 

-ia 
( ( N  + I ) u ( x ) ( ~ + ' )  

Y(x) = Cu(x)exp 

where A # 0 and C # 0 is an arbitrary real constant, and where u(x )  is a solution of the 
system (4). 

transformation w = f (U) with f # 0, which gives us 
Another way of dealing with (19),(20) is to transform (4) locally using the 

Then, equating the right-hand sides of (21),(22) with the right-hand sides of (19), (ZO), we 
find (for A # 0, as before) that 

where U # 0 is an arbitrary real constant. Again we see that there are two cases to consider: 
N = 1 and N # 1. 
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For N = 1 we obtain 

f ( u j = C e x p ( $ / Y $ 2 m d c )  d t  

with C an arbitrary real constant. The condition on g is 

When N # 1. f is given by 

with C an arbitrary real constant and with the following condition on R: 

This reasoning can be summarized in the following: 

Result 4. (i) The function 

W) = exp(ig(u(x))) 

is a solution of (1) whenever g is a solution of ('2.4) and w(x)  = f ( u ( x ) )  is a solution of 

A 
O W = -  wlrwlr = A  

W 

with f given by (23). 
(ii) The function 

W) = exp(ig(u(x))) 

is a solution of (1) whenever g is a solution of (26) and w(x)  = f (U@)) is a solution of 

W P W P  = A AN 
o w = -  

W 

with f given by (25) for N # 1 

We treat equations (24) and (26) relating g to the nonlinearity F as before: we assume 
a form for g and treat the equations as determining F .  Taking g(u)  = U#, we have the 
following examples of the wave equation, exact solution and relation between U and w :  

where w is a solution (listed in table 1) of the compatible system 

wPwP = A. A 
O w = -  

W 
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N #  I , @ # - 2 .  

where w is a solution (listed in table 1) of the compatible system 
AN 

Ow=- w,w, = A. 
W 

If we choose @ = -1, N = 2, C = 0, then we find that the wave equation is 

0" + A C - ~ I W I ~ ~  = 0 (27) 
with the exact solution 

and 

u(x)  = aw(x) 

where w solves 
2A 

o w = -  w,wp = ~ h .  
W 

Equation (27) is of some interest of all the possible nonlinearities F ( I Y l ) ,  the 
nonlinearity F(IC'l) = 1QI2 gives the widest possible symmetry group, admitting the 
conformal group. Equation (27) (and indeed equation (1)) can be reduced to the nonlinear 
Schrodinger equation in (1 + 2)-dimensional time-space (see Basarab-Honvath et al 1995) 
with the same nonlinearity. This equation also admits the widest possible symmetry group 
for nonlinearities of the given type. It can be reduced to the (1 + I)-dimensional nonlinear 
Schrodinger equation with the same nonlinearity, and this equation has soliton solutions 
(the well known ZaWlarovShabat soliton). Using this soliton, we can construct a new type 
of solution of the hyperbolic wave equation (27). Of course, this does not imply that (27) 
has soliton solutions located in three-dimensional space. 

3. Conclusion 

We have demonstrated an approach which can give new exact solutions of some nonlinear 
wave equations of the same type as (1). The novelty in ow approach lies in the fact that we 
exploit the compatibility conditions for the d'Alembert-Hamilton system to dictate the type 
of nonlinearity and the exact solution(s). Moreover, some of the equations we obtain appear 
to be of interest in physics, but we are unable to make any statement about the physical 
nature of the exact solutions we obtain, as our approach has not used any physical criteria 
to single out any type of solution. 

Of course, this is not the only approach possible: we could, for instance, reduce (1) to the 
Schrodinger equation (as in Basarab-Horwath et a1 1995) and then apply a similar method 
to this new equation in the amplitudephase representation. Also, it is possible to consider 
a more general connection between the amplitude and phase, such as U = G(v,v,) for 
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some function G. This leads to a system involving the Bom-Infeld equation, which has a 
very wide symmetry group, and we obtain new exact solutions of (1). This differential 
connection between amplitude and phase will of course be important when we allow 
nonlinearities dependent on derivatives, such as F(lY1, Y;Yp). We will report on this 
work in a forthcoming paper. 
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